

Building
bot-resilient
websites through
proactive testing
“Breaking things on purpose: testing your website before the bots do”

Hello, I’m Lucas

- I’ve joined Upsun (then Platform.sh) almost 8 years ago (!) to be a
solutions architect

- My background is in systems and networks engineering
- I am now the manager of the onboarding team, teaching you how to

make the best use of Ibexa PaaS and Upsun in general

Did you know?

- In April 2025, Imperva measured that 51% of global internet traic was
made by bots.
- This doesn’t mean fewer human traic, quite the opposite in fact; this only

means more traic, with dierent users
- This is good and bad bots; Google is a bot you (probably) want
- This is also industry-dependant; it is up to 61% in the travel industry

hps://cpl.thalesgroup.com/about-us/newsroom/2025-imperva-bad-bot-report-ai-internet-traic

Why even test?

Testing individual
components is “easy”

- Test individual components, of course
- Use a hint from Elixir: “fail fast”;

- Fail as early as you can
- Leave logs and nothing else
- Error gracefully, be kind to your user

- “Nothing’s easy until it’s done”

How those components work together is diicult

- Interactions are where most bugs are
- Your app does a lot, works with a lot of services and external parts
- If any breaks or throws unexpected errors or content, are you ready?

Components working together at scale is why you
(yes, you) are the best at what you do

- Like every kind of accident, you’re not always to blame
- Even Formula One drivers wear a seatbelt
- Testing is your seatbelt; it can’t prevent every accident, but it will limit damages

- Testing as many things as you can, in production-like conditions, as
soon as you can, is essential.

What’s testing?
What should I test?

Testing is breaking in a controlled fashion

- Breaking things is fun!
- Ask for help, anyone can break things

- Reporting framework:
- What were you trying to do when it broke?
- What were you expecting?
- What did the breakage look like?
- Can it be easily reproduced? Provide steps

- If someone reports something broken, fix it, then write a test for it
- Don’t test in production (I know, right?)

The two kinds of testing: “shallow” testing

- Shallow testing is what you could call “at scale”
- Many users doing the same easy thing (cached front page...)
- Many users doing the same diicult thing (logging in, buying something...)

- Don’t overdo it! Oversizing tests will waste resources in more ways than one
- Many users doing multiple things (checking a bunch of maybe-uncached articles

at once)
- Same here; don’t overdo it! "Clean cache then full test" is usually not an accurate

real-world scenario

The two kinds of testing: “deep” testing

- Deep testing is what you could call “interactions”
- As complete of a path as you can

- hp cache -> crazy routing -> database interactions -> app cache
- “What if”s…

- What if app cache explodes because you have too many objects?
- What if the database is slow?
- What if the cache caches *too much*?

When and where
should I test?

Test early, often and everywhere you can

- Test as soon and often as you can, small and early is beer than not
- Just like working out, regularity is what makes testing good

- Individual tests on your machine (in a git hook…) are good
- You can run even more tests in a remote pipeline (GitHub Actions,

GitLab pipelines…) for each merge request, if you use them
- Test the app in prod-like conditions as soon as you can

- Avoids the “it works on my machine”®
- Ibexa Cloud can automatically, completely and quickly reproduce your production

environment, including data and sizing (soon)

How about the bots? What will they test?

There are two kinds of bots; the good bots and the bad bots:
- Good bots will respect your robots.txt

- They could even follow content-signal directions

- Good bots will respect your rate limits (slow down on 421)
- Good bots won’t spam uncached pages

- Think search pages, logins pages, facets, account creation…

- Bad bots will do the opposite of ^, and sometimes even pretend to not
be a bot by faking their user-agent

More often than not, bot issues are scale issues.

Alright, I’ll test
(more)

Tools to get through “shallow” testing

- K6 by Grafana is very good
- It uses JS as its language, making it easy to understand and automate

- Octoperf is an example of a hosted load-test tool
- With Ibexa PaaS Flex (not yet available), you’ll be able to reproduce

your production 1:1, with sizing if you wish; you’ll even be able to make
changes on the fly

Tools to get through “deep” testing
- Remember Postman?

- Hoppscotch
- Bruno (usebruno.com)

- Curl is still very relevant
- It’s the base for most tools
- It’s likely already installed (unless you use Debian)
- It’s amazing at reproducing simple tests

- Hurl (Orange-OpenSource/hurl) is very neat to share your tests
- Based on Curl
- Allows for complex tests, even chaining requests
- Still uses regular, git-friendly text files

- With Ibexa PaaS, you’ll be able to reproduce your entire production environment,
complete with services and data, in just a few minutes

http://usebruno.com

Fighting fire with fire: geing robots
to help with your robot problems

- AI is an amazing excuse to write good documentation
- AGENTS.md is great to get your agent friend started

- From good documentation, AI can generate good tests
- Of course, good tests aren’t great tests

- you’re still on the hook for those <3
- Pro-tip: record yourself explaining the test, send the transcript to your fav agent

- AI is amazing at writing boilerplate
- AI is also a great cyber-rubberduck

- This one doesn’t float though, it drinks your water

http://agents.md

Thanks a lot!
Questions?

